Abstract

Two new cyclometalated Ru(II) complexes of the general formula [Ru(N-N)2(1-Ph-βC)](PF6), where N–N = 4,4′-dimethyl-2,2′-bipyridine (dmb, Ru1), 2,2′-bipyridine (bpy, Ru2), and 1-Ph-βC (1-phenyl-9H-pyrido[3,4-b]indole) is a β-carboline alkaloids derivatives, have been synthesized and characterized. The in vitro cytotoxicities, cellular uptake and localization, cell cycle arrest and apoptosis-inducing mechanisms of these complexes have been extensively explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, inductively coupled plasma mass spectrometry (ICP-MS), flow cytometry, comet assay, inverted fluorescence microscope as well as western blotting experimental techniques. Notably, Ru1 and Ru2 exhibit potent antiproliferative activities against selected human cancer cell lines with IC50 values lower than those of cisplatin and other non-cyclometalated Ru(II) β-carboline complexes. The cellular uptake and localization exhibit that these complexes can accumulate in the cell nuclei. Further antitumor mechanism studies show that Ru1 and Ru2 can cause cell cycle arrest in the G0/G1 phase by regulating cell cycle relative proteins and induce apoptosis through mitochondrial dysfunction, reactive oxygen species (ROS) accumulation and ROS-mediated DNA damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call