Abstract

Ruthenium-based complexes have been regarded as one of the most potential metal-based candidates for anticancer therapy. Herein, two ruthenium (II) methylimidazole complexes [Ru(MeIm)4(4npip)]2+ (complex 1) and [Ru(MeIm)4(4mopip)]2+ (complex 2) were synthesized and evaluated for their in vitro anticancer activities. The results showed that these ruthenium (II) methylimidazole complexes exhibited moderate antitumor activity comparable with cisplatin against A549, NCI-H460, MCF-7 and HepG2 human cancer cells, but with less toxicity to a human normal cell line HBE. Intracellular distribution studies suggested that complex 2 selectively localized in the mitochondria. Mechanism studies indicated that complex 2 caused cell cycle arrest at G0/G1 phase by regulating cell cycle relative proteins and induced apoptosis through intrinsic pathway, which involved mitochondrial dysfunction, reactive oxygen species (ROS) accumulation and ROS-mediated DNA damage. Further, studies by western blotting suggested that MAPK and AKT signaling pathways were involved in complex 2-induced apoptosis, and they were regulated by the level of ROS. Overall, these findings suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent in the treatment of cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.