Abstract
Juvenile hormone is an important hormone which controls the developmental process in the lepidopteran insects, hence, referred as insect growth regulator. Juvenile hormone binding proteins are the carrier of juvenile hormone from the site of secretion to the site of action and play vital role in juvenile hormone action. We have designed four different juvenile hormone analogs incorporating sulfonamide and heterocyclic moieties using computer-aided tools. All analogs (T3-T6) gave comparative energy profile in comparison to in use insect growth regulators like fenoxycarb (T2) and pyriproxyfen (T1). Further, theses analogs have been screened on biological model Galleria mellonella (wax moth) for their mortality rate. All analogs were evaluated using three different concentrations (1000, 1500, and 2000 ppm) and five different exposure periods (2, 4, 6, 8, and 10 h). In vivo study showed that analog N-(1-isopropyl-2-oxo-2-morpholino-ethyl) toluene sulfonamide (T6) and N-(1-isopropyl-2-oxo-2-piperidino-ethyl) toluene sulfonamide (T4) exhibit the good larval mortality at lower concentration (1000 ppm) after 8 h exposure in comparison to pyriproxyfen (T1) and fenoxycarb (T2). The findings demonstrate the effectiveness and validity of the virtual screening approach (docking) and provide a starting point for the development of novel juvenile hormone analogs to counter G. mellonella.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have