Abstract

The toxic effects of poly(HEMA)-based polymeric nanoparticles must be analyzed before their biomedical applications as drug delivery systems. The aim of the study was to characterize and evaluate the toxicity for its biocompatibility of a newly synthesized l-glutamic acid-g-p(HEMA) polymeric nanoparticle The nanoparticle was synthesized with surfactant-free emulsion polymerization and grafting techniques. Grafting efficiency was estimated at 58%. The nanoparticle shape was verified as nearly spherical by scanning electron microscopy. Atomic force microscopy images showed a rough surface topography. The nanoparticle had an average size of ~194.6 nm on zeta analysis, and the zeta potential value was −18 mV. Fourier transformed infrared spectroscopy revealed spectra from 750 to 4000 cm−1 and characteristic peaks of stretching bands. The swelling ratio was 46%. With 24-h exposure, p(HEMA) and l-glutamic acid-g-p(HEMA) did not have cytotoxic effects on a human bronchial epithelial cell line (16HBE) and human monocyte cell line by water-soluble tetrazolium salt 1 (WST-1) assay and lactate dehydrogenase assay (LDH). It did not show genotoxic potential by comet assay and did not have mutagenic effects on Salmonella typhimurium TA98, TA100, TA1535 and TA1537 strains by Ames test. The nanoparticle at 160 μg/ml showed 2% hemolytic activity on erythrocytes. On cell migration assay, the percentage closure difference between exposed and control cells was estimated at 21%. We found no irritation effect on Hen's egg test-chorioallantoic membrane test. We determined that the polymeric nanoparticle l-glutamic acid-g-p(HEMA) was biocompatible and has potential for use in a drug delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.