Abstract

New superabsorbent hydrogels were synthesized through free radical graft copolymerization of partially neutralized acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) onto carboxymethyl cellulose (CMC) backbones. The structure and morphology of the synthesized superabsorbent hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscope. The effect of the molar ratio of AMPS to AA, the APS concentration, and the CMC content on swelling ratio was optimized. The swelling properties in various pH solutions and saline solutions as well as the swelling kinetics were also evaluated. Results showed that the introduction of AMPS enhanced the swelling capacity, swelling rate, and salt-resistance of the superabsorbent hydrogels. Moreover, the hydrogels exhibited smart swelling behavior in multivalent salt solutions and better reversible pH sensitivity in the pH 2.0 and 7.0 solutions, which makes the hydrogels available as a candidate for drug delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.