Abstract

The synthesis by arc-melting techniques, the single-crystal X-ray structure, and the theoretical analysis of Gd4B3C4 are reported. It crystallizes in the triclinic space group P1 with a = 3.637(2) A, b = 3.674(2) A, c = 11.859(5) A, alpha = 93.34(5) degrees, beta = 96.77(5) degrees, gamma = 90.24(5) degrees, and Z = 1. In this structure, the boron and carbon atoms form two different types of nonmetal arrangements: 1-D (BC)infinity branched chains and finite (0-D) linear CBC "molecular" units. Gd4B3C4 is the first characterized member of the rare earth metal borocarbide series in which both 1-D and "molecular" 0-D nonmetal atom systems coexist. From the structural and theoretical analysis, the following formal charge distribution can be proposed within the ionic limit: (Gd3+)4(BC2(5-)(BC3-)2.e-. Tight-binding calculations suggest that the excess electron in the ionic limit is mainly localized on the Gd atoms (at the bottom of the 5d band), while LAPW calculations favor its localization on the (BC)infinity chain. The bonding within this compound is fully analyzed and compared to other members of the rare earth metal borocarbide series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.