Abstract

In search for chemically stable americium compounds with high power densities for radioisotope sources for space applications, AmVO3 and AmVO4 were prepared by a solid-state reaction. We present here their crystal structure at room temperature solved by powder X-ray diffraction combined with Rietveld refinement. Their thermal and self-irradiation stabilities have been studied. The oxidation states of americium were confirmed by the Am M5 edge high-resolution X-ray absorption near-edge structure (HR-XANES) technique. Such ceramics are investigated as potential power sources for space applications like radioisotope thermoelectric generators, and they have to endure extreme conditions including vacuum, high or low temperatures, and internal irradiation. Thus, their stability under self-irradiation and heat treatment in inert and oxidizing atmospheres was tested and discussed relative to other compounds with a high content of americium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call