Abstract

Amorphous titanium hydroxyphosphate with formula Ti(OH)(1.36)(HPO(4))(1.32).2.3H(2)O and a new silica-modified titanium hydroxyphosphate with a general formula Ti(OH)(2x)(HPO(4))(2-x).ySiO(2).nH(2)O are synthesized and characterized using IR, TG, XRD, SEM, solid-state NMR, and BET techniques. It is concluded that SiO(2) is evenly distributed within the titanium phosphate (TiP) agglomerates and that neither the separate silica phase nor the titanium silicates are formed during the synthesis of silica-modified titanium hydroxyphosphate. Correlations between the texture, ion-exchange properties of the amorphous titanium hydroxyphosphate, and the amount of SiO(2) present within the TiP matrix are established. Sorption properties of silica-modified titanium hydroxyphosphate toward Cs(+) and Sr(2+) are studied in a series of samples with an increasing amount of silica, at different pH, and in NaCl solutions with a varying ionic strength. It is found that sorption of Cs(+) does not depend practically on the amount of SiO(2) present, whereas the Sr(2+) uptake drastically decreases with an increase of silica amount. The effects of pH and of the electrolyte concentration on the sorption behavior of titanium phosphate are discussed in terms of ionic hydration shell and titanium phosphate structural specificity. The kinetics of sorption processes is also investigated, and the diffusion coefficients for cesium and strontium are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.