Abstract

Oligonucleotides tethered by an alkylene linkage between the O(6) -atoms of two consecutive 2'-deoxyguanosines, which lack a phosphodiester linkage between these residues, have been synthesized as a model system of intrastrand cross-linked (IaCL) DNA. UV thermal denaturation studies of duplexes formed between these butylene- and heptylene-linked oligonucleotides with their complementary DNA sequences revealed about 20 °C reduction in stability relative to the unmodified duplex. Circular dichroism spectra of the model IaCL duplexes displayed a signature characteristic of B-form DNA, suggesting minimal global perturbations are induced by the lesion. The model IaCL containing duplexes were investigated as substrates of O(6) -alkylguanine DNA alkyltransferase (AGT) proteins from human and E. coli (Ada-C and OGT). Human AGT was found to repair both model IaCL duplexes with greater efficiency towards the heptylene versus butylene analog adding to our knowledge of substrates this protein can repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.