Abstract

Aromatic aliphatic polyethers containing bis(styryl)anthracene units in the main chain separated by flexible spacer of 11 (AND52) or 12 (AND53) methylene units, were synthesized and characterized aiming to be applied as emitting materials in polymer light emitting diode (PLED) devices. The polymers are soluble in common organic solvents and have average molecular weight of about 15kDa. Differentiations owing to an odd-even number of methylene units (χ=11 vs χ=12) are observed in their optical properties in solid state. Thin films as well as PLED devices were fabricated via conventional spin-coating process. Initially, various parameters have been investigated concerning the solubility of the polymers, the effect of film thickness on the electrical properties, and their thermal stability. The optical properties of the two polymers were investigated by NIR-Vis-far UV spectroscopic ellipsometry (SE). The accurate determination of the thickness and the optical constants (refractive index and dielectric function as a function of wavelength) were derived. These provide substantial insights into the final design of the optimum final multi-layer structure of the PLEDs, if we take into account that the external quantum efficiency (EQE) of electroluminescence (EL) strongly depends on the optical interference of the beams of emitted light that have been multiply reflected from the layer interfaces. The morphological characterization of the AND52 and AND53 polymeric thin films was carried out using atomic force microscopy (AFM), while current density-voltage (J-V) characteristics of the devices were studied by electrical measurements. The single PLED devices were switched on at relatively low operation voltages, showing the potential as backplanes for active matrix PLED applications. In this perspective, it can be assumed that further studies of the presented materials will enable the development of flexible PLEDs with the possibility to scale up their dimensions for bigger active area devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.