Abstract
Heteroleptic ruthenium-complexed ladder-like structured polysilsesquioxane (LPSQ-Ru) was synthesized by post coordination reaction of bidentate ligand side chains in LPSQ with reactive Ru(II) complexes, which was well characterized by 1H and 29Si NMR, FT-IR, and spectroscopic techniques. The photophysical properties of LPSQ-Ru were examined by UV and PL analyses in both solution and solid states, comparing to analogous polymers of ruthenium-complexed polystyrene (PS-Ru). Obtained absorptions of LPSQ-Ru and PS-Ru were broadened ranging from 390-490 nm regardless of the states. However, LPSQ-Ru exhibited higher and shaper PL emission spectrum in comparison to that of PS-Ru, particularly in the solid state, because Ru-complexes in LPSQ were much effectively isolated, preventing their aggregations due to the rigid double strained siloxane backbone. This extinguished photophysical property in LPSQ-Ru kept after intensive thermal treatment at 250 °C for 90 min, which was not achieved in PS-Ru (~5-fold decrease). These differences originated from the backbone structures were also appeared in electrochemical properties in the solid states.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have