Abstract

The CuFe2O4 photocatalysts were synthesized by the solution combustion synthesis method, followed by heat treatment at a temperature range of 400 to 1100 °C. Later, they were characterized for application in the photodegradation of synthetic dyes under visible radiation. The X-ray diffraction results showed the presence of cubic and tetragonal phases of CuFe2O4 and secondary phases of Fe2O3 and CuO, at low temperatures. The infrared spectrum profile confirms the formation of the phases pointed out in the XRD. For most specimens, the scanning electron microscopy examination revealed a morphology similar to porous flakes and a quasi-spherical shape. On the other hand, samples heat-treated at 1100 °C displayed a plate-like morphology. The specimens’ band gap ranged from 1.49 to 1.58 eV, indicating that the material is a semiconductor. Regarding the photocatalytic efficiency, the 400 °C heat-treated samples showed better activity when the visible irradiation was used over the green malachite and rhodamine B dyes. The solution degradation rates on the first and former dyes were 56.60% and 84.30%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call