Abstract

Abstract The fabrication of vertical-oriented, high aspect ratio silicon nanowires (SiNWs) with controllable density and length is of interest for the development of nanowire-based electronics and photovoltaic devices. Here we reported a both simple and economical method for synthesizing large-area epitaxial-oriented SiNW arrays, which was achieved on the Si (111) substrates by Au catalyzed vapor-liquid-solid mechanism using the conventional chemical vapor deposition furnace system. Their morphologies and microstructures were investigated with scanning electron microscopy and transmission electron microscopy, respectively. The results showed that most of nanowires were vertically grown on substrates, their density and length can be well controlled. As-grown SiNW is composed of a single crystalline silicon core and a thin amorphous silicon oxide coating layer. Furthermore, their growth kinetics was discussed in detail. It indicates that there are both the substrate-nanowire Si adatom surface diffusion and the slight radial growth during the upgrowth of nanowire, and besides, the migration of Au on the sidewall of nanowire was also found for such epitaxial-oriental SiNWs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call