Abstract

We report on the growth of horizontal and straight Si nanowires (NWs) on Si substrate using sputter deposition of the Si layer followed by thermal annealing at 1000 °C and above. The growth of horizontal NWs was achieved without the use of any metal catalyst. Uniform cylindrical shaped Si NWs with a diameter in the range of 50–60 nm and a length of up to 8 μm were synthesized. The as-synthesized Si NWs have a Si core covered with a thin amorphous native oxide layer, as revealed by high resolution transmission electron microscopy. The aspect ratio of these Si NWs is in the range of 100–160. Micro-Raman studies on the NWs reveal a tensile strain on the Si NW core due to presence of a thin oxide layer. From the Raman shift, we calculate a strain of 1.0% for the catalyst free Si NW. FTIR analysis indicates the presence of interstitial oxygen atoms in the Si NWs, as expected from oxidation of Si NWs. For comparison, metal catalyst (Au) assisted Si NWs have also been grown on Si(100) substrate by a similar process. These NWs have a similar diameter and a marginally higher aspect ratio. A model for the growth mechanism of horizontal NWs is presented. This represents one of the first examples of direct horizontal growth of straight Si NWs on commonly used Si substrates suitable for nanoelectronic device fabrication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.