Abstract

Considering the combination of lanthanide-doped CaWO4 nanophosphor and mesoporous matrix may contribute to superior luminescent properties, CaWO4:Eu3+/SBA-15 composites were successfully synthesized in a mild condition. The physicochemical properties of the resultant composites were carefully characterized by X-ray diffraction, high-resolution transmission electron microscopy, inductive coupled plasma optical emission spectroscopy (ICP), N2 adsorption–desorption, Fourier transform infrared spectroscopy, and luminescence spectra. It’s found that the incorporation of CaWO4:Eu3+ showed no obvious impact on the ordered mesostructure of the host matrix SBA-15, which, however, led to a decrease of BET surface area from 836 to 187 m2 g−1 for pure SBA-15 and CES (0.5), respectively. ICP results indicated that the real loaded amount of CaWO4:Eu3+ in SBA-15 host was lower than the initial molar ratios (x) of CaWO4:Eu3+ to SBA-15 for all samples. The maximum loaded level of CaWO4:Eu3+ in SBA-15 is about 27.3 %. Moreover, the real Eu3+ dopant concentration increased with the initial molar ratios (x), which showed a maximum of about 6.51 % at x = 0.25. The resultant CaWO4:Eu3+/SBA-15 composites exhibited enhanced-luminescent properties than that of pure CaWO4:Eu3+ nanoparticles, which can be mainly attributed to the variation of Eu3+ dopant concentration and the host-protect effect through interaction between guest molecules and host matrix. The available large surface area, pore volume, and superior luminescent properties would facilitate future applications for the composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call