Abstract

ABSTRACTComposite liquids – liquids composed of polymers, particles, and small molecule solvents – constitute an important class of synthetic and naturally occurring materials. Examples include molecular composites, ceramic precursors, lubricants, adhesives, and the cytoplasm in biological cells. Due to the complexity of these liquids, experimental studies of precisely defined systems are essential in developing an understanding of the interactions between all components in the liquid. Unfortunately, such fundamental studies have been relatively rare due to both the difficulty of synthesizing precisely defined composite liquids and the lack of adequate experimental methods to monitor the motions of the various constituents.We have recently reported the synthesis, characterization and some studies of the dynamics of a rod/sphere composite liquid system [1]. In our case the “polymer” constituent is a rigid rod polymer, poly(γ-benzyl-α,L-glutamate) (PBLG). Rigid rod polymers are frequently used in composite liquids as viscosity enhancers. PBLG is commercially available in a wide range of molecular weights and its static and dynamic behavior in dilute and nondilute solutions has been studied. It, in addition, forms mesophases in the concentrated regime. The ceramic “particles” in our composite liquid are coated silica spheres. These spheres are synthesized by the method of Stober et. al. [2] and coated with an organic coating (3-(trimethoxysilyl)propyl methacrylate (TPM)) following a procedure based on that of Philipse et. al. [3] to render them dispersible in organic solvents. The spheres with sizes in the range from 10 nm up to almost 1μm can be synthesized with a relatively narrow size distribution. The solvent in our studies is dimethylformamide (DMF). Both polymer and particle are dispersible as singlets (nonaggregating) in these solvents and the PBLG retains its rigid (or nearly rigid) rod conformation. The diffusion of both the polymer and the sphere in the composite liquid is measured by dynamic light scattering (DLS) [4]. In this paper, we focus on the spheres and examine the effects of rod concentration and rod length on the diffusion of different size spheres. This study suggests that the solution microstructure has an important influence on sphere diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.