Abstract

The Schiff base ligand derived from indole-3-carboxaldehyde(indal) and glycylglycine(glygly) were synthesized and characterized by elemental analysis, IR, electronic spectrum, 1H NMR and mass spectrum. Co(II), Ni(II) and Cu(II)–indal-glygly Schiff base complexes were synthesized and characterized by elemental analysis, molar conductance, IR, electronic spectra, magnetic measurements, ESR, electrochemical studies, TGA, DSC analysis, XRD and SEM. Conductance measurements indicate that the above complexes are 1:1 electrolytes. IR spectral data show that the ligand is tridentate and the binding sites are azomethine nitrogen, peptide nitrogen and carboxylato oxygen atoms. Electronic spectral measurements indicate tetrahedral geometry for Co(II) and Ni(II) complexes and square planar geometry for Cu(II) complex. Magnetic measurements show weak ferromagnetic behaviour for Co(II) and Ni(II) complexes and paramagnetic behaviour for Cu(II) complex. ESR spectral data shows the ionic link between metal and the Schiff base ligand. The metal complexes are found to be stabilized in the unusual oxidation states of the metal ion during electrolysis. Thermal analysis of the complex indicates that the decomposition takes place in three steps. IR and thermal studies indicate that the fourth position would be occupied by a water molecule in complexes. XRD shows that the complexes have the crystallite size of 31, 40 and 67nm, respectively. The surface morphology of the complexes was studied by SEM. The antimicrobial activity of the ligand and its complexes were screened by Kirby Bayer Disc Diffusion method. DNA cleavage studies were performed for metal–Schiff base complexes in presence of hydrogen peroxide as oxidant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call