Abstract

A series of novel carbon nanofibers (CNFs) supported bimetallic copper/zirconia catalysts are synthesized by deposition precipitation method and calcined at different temperatures. Calcined catalysts are characterized by various techniques like X-ray diffraction, N2 adsorption–desorption, N2O chemisorption, high resolution transmission electron microscopy, temperature programmed reduction, X-ray photoelectron spectroscopy and temperature programmed desorption (CO2 & NH3). The structure–activity correlation is discussed in details. The results demonstrate 450 °C as optimum calcination temperature for methanol synthesis rate with CO2/H2 feed volume ratio of 1:3. CO2 conversion is found to be directly proportional to copper metallic surface area (SCu), while a linear relationship is observed between methanol synthesis rate and fraction of dispersed Cu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call