Abstract

A series of novel bimetallic copper/zirconia carbon nanofibers supported catalysts with different Cu contents (5–25 wt%) were synthesized via deposition precipitation method. The physicochemical characterization of the calcined catalysts was carried out by X-ray diffraction, inductively coupled plasma optical emission spectroscopy, N2 adsorption–desorption, N2O chemisorption, temperature programmed reduction, X-ray photoelectron spectroscopy, high resolution transmission electron microscopy and temperature programmed CO2 desorption. Structure-reactivity correlation for catalytic hydrogenation of CO2 to methanol was discussed in details. Reaction studies revealed 15 wt% as optimum Cu concentration for CO2 conversion to methanol with CO2/H2 feed volume ratio of 1:3. Cu surface area was found to play a vital role in methanol synthesis rate. CO2 conversion was observed to be directly proportional to the number of total basic sites. A comparative study of this novel catalyst with the recently reported data revealed the better CO2 conversion at relatively low reaction temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call