Abstract
Nanoparticles of cerium doped calcium fluoride (CaF2:Ce) were synthesized for the first time using the hydrothermal method. The formation of nanostructures was confirmed by X-ray diffraction (XRD) patterns, indicating cubic lattice structure for the particles produced. Their shape and size were observed by scanning electron microscopy (SEM). Thermoluminescence characteristics were studied by having the samples irradiated by gamma rays of 60Co source. The optimum thermal treatment of 400°C for 30min was found for the produced nanoparticles. The Tm−Tstop and computerized glow curve deconvolution (CGCD) methods, used to determine the number of component glow peaks and kinetic parameters, indicated seven overlapping glow peaks on the TL glow curve at approximately 394, 411, 425, 445, 556, 594 and 632K. A linear dose response of up to 2000Gy, was observed for the prepared nanoparticles. Maximum TL sensitivity was found at 0.4mol% of Ce impurity. Other TL dosimetry features, including reusability and fading, were also presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.