Abstract

Dysprosium doped calcium fluoride (CaF2:Dy) nanoparticles were produced for the first time by using the hydrothermal method. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) patterns were utilized to characterize the synthesized material. The particle size of about 43nm was evaluated from XRD data and supported by the SEM images. The Tm−Tstop and the computerized glow curve de-convolution (CGCD) methods were employed to determine the number of component glow peaks and kinetic parameters of the synthesized nanoparticles. Thermoluminescence glow curve of this phosphor exhibits six overlapping glow peaks. The optimized concentration of Dy impurity was found at 3mol%. The prepared nanoparticles exhibit a roughly linear dose response to absorbed dose of 1000Gy received from 60Co gamma source. This finding recommends this nanomaterial as a good candidate for high dose dosimetry. Other dosimetric features of this novel phosphor are also presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.