Abstract

ABSTRACTAmine‐terminated monodisperse hard segments (MDHSs) containing two to four 4,4′‐methylenebis (phenyl isocyanate) extended by 1,4‐butanediol have been synthesized using carboxybenzyl protecting‐deprotecting strategy. Pure MDHSs in large scale were obtained in good yield and their structures were confirmed by 1H‐, 13C‐NMR spectroscopy and GPC‐MALLS. Differential scanning calorimetry (DSC) showed that as the hard segment (HS) size increased, the melting and glass transition temperature and the change of heat capacity at glass transition of ethyl capped MDHSs increased. Model thermoplastic polyurethanes (TPUs) were synthesized using the reaction of bischloroformate of poly (tetramethylene oxide) (PTMO) diol or polyisobutylene (PIB) diol with amine‐terminated MDHSs. X‐ray diffraction results indicated the amorphous structure of model TPUs. DSC revealed HS related endotherms, regardless of SS, which were attributed to the local ordering of the HSs. Additional endotherms in PTMO based model TPUs might arise from the dissociation of hydrogen bonding between PTMO and HSs. The lower Tg in model TPUs compared to the polydisperse analogues observed by dynamic mechanical analysis (DMA) indicated higher microphase separation of monodisperse HSs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3171–3181

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.