Abstract

The controlled synthesis and surface engineering of inorganic nanomaterials hold great promise for the design of functional nanoparticles for a variety of applications, such as drug delivery, bioimaging, biosensing, and catalysis. However, owing to the inadequate and unstable mass/heat transfer, conventional bulk synthesis methods often result in the poor uniformity of nanoparticles, in terms of microstructure, morphology, and physicochemical properties. Microfluidic technologies with advantageous features, such as precise fluid control and rapid microscale mixing, have gathered the widespread attention of the research community for the fabrication and engineering of nanomaterials, which effectively overcome the aforementioned shortcomings of conventional bench methods. This review summarizes the latest research progress in the microfluidic fabrication of different types of inorganic nanomaterials, including silica, metal, metal oxides, metal organic frameworks, and quantum dots. In addition, the surface modification strategies of nonporous and porous inorganic nanoparticles based on microfluidic method are also introduced. We also provide the readers with an insight on the red blocks and prospects of microfluidic approaches, for designing the next generation of inorganic nanomaterials.

Highlights

  • Inorganic nanoparticles show prospect for an array of fields, such as imaging [1], optoelectronics [2], catalysis [3], sensing [4], and drug delivery [5], owing to their unique physicochemical properties at nanoscale

  • The results showed that the average particle size and particle size distribution containing silica precursors and alkaline catalysts were injected into separate inlets of the microfluidic couchldipb. eTchoenrtersoullltesdsbhyowadedjutshtiantgthteheavfleorwagreaptearatnicdlerseisziedaenndceptaimrtiecloefstihzee dliiqsutriidbupthioansec.oYueldt, bine aconnottrhoelrled elegant study, it was demonstrated that the sequential injection of silica precursors into a micromixer by adjusting the flow rate and residence time of the liquid phase

  • The physical and chemical properties of metal nanomaterials are closely related to their microscopic particle size and morphology

Read more

Summary

Introduction

Inorganic nanoparticles show prospect for an array of fields, such as imaging [1], optoelectronics [2], catalysis [3], sensing [4], and drug delivery [5], owing to their unique physicochemical properties at nanoscale. The synthesis and surface modification of various types of inorganic nanoparticles using the unique capabilities of microfluidic devices have been systemically described Their potential application in different sectors, including theranostics, therapeutics delivery, biosensing, and catalysis has been briefly introduced. The chemical etching strategies based on microfluidic devices can be feasible for the synthesis of the other type of anisotropic silica nanomaterials, with hollow structures such as cubes, rods, and bands [32]. Icroreactor, to obtain core-shell structured Fe2O3-SiO2 nanocomposites with different shapes (Figure 3c) [32] They indicated that the thickness of the outer shell can be well adjusted by changing the flow rate of the TEOS solution. Prebciupliktastyionnthisesoisnemoefththoedsmtoosot bctoaminmmoentlayl uosremd ectoanl vceonmtipoonsailtebunalknosymnattheersiiaslsm[9e7th].odIns otordoebrtatoinombteatianl or metpaalrctiocmleps owsiitteh tnhaenosmmaaltlersiiazles a[n9d7].naInrroowrdesrizetodoisbttraibinutpioanrt,itchleesrewaictthiotnhesyssmteamll nseizeedsantodhnaavrerohwighsize distsruibpuetrisoantu, trhaetiorena;chtoiownesvyesrt,edmuenetoedthsetolihmaivtaetihoinghofsuhpeaetrsaantdurmataiossnt;rhaonwsfeevr,etrh, edhuiegthostuhpeelrimsaittuartaiotinonofohfeat andthmeawsshtorlaenssyfesrte, mthecahnignhotsubepemrsaaintutaraintieodndoufrtihnegwsphoonletasnyesoteums ncuanclneoattiboen.mTahinetraeifnoered, dituisricnugmspboernstoamneeous nuctloeaotibotna.inThlearregfeorqeu, aitnitsictiuems boef rmsoemtael toorobmtaeitnallacrogme pquosaintetitnieasnoofmmaettearliaolrsmweittahl choimghpoqsuitaelintya,nonmarartoewrials withsizheigdhisqtruibaulittiyo,nn, aarnrdowmosinzoeddisispterribsiuttyi.oCn,omanpdarmedonwoidthisptheersciotyn.vCenomtiopnaarlebduwlkitshynththeecsoisnavpenptriooancahlebs,ulk syntthheeshisigahppsrpoeaccihfiecss, uthrefahciegharsepaecoiffitchseurmfaicceroaflreuaidoifcthcheamnincerol frleuniddiecrcshmanicnreolflreuniddiecrssymsitcermofsluaimdiecnsaybslteems amefonrabolpetfiomraolphteimataal nhdeamt aansds tmraansssfterran[9s8fe].r T[9h8e].hTihgehhhiegahthtreaant strfearnsafbeirliatbyilciatyn craendurecdeuthcee ttheemtpemerpateurareture flucfltuuacttuioantiso, nws,hwichhicmhamyabyebecacuasuesdedbbyytthheeeennddootthheerrmmiicc oorreexxooththeermrmicicreraecatciotinosn.sC. oCnocnocmomitaintatnlyt,lyth, ethheighhigh masms atrsasntsrafenrsefeffriceiffienccieynccayncsahnosrhteonrttehne trheeacrteiaocntitoimn etimanedainmdpirmopverotvhee tyhieelydi,etlhdu, sthleuasdlienagditnogathoigahheirghbeartchto-bbaattcchhr-teop-rboadtcuhcirbeiplirtoydauncdibhiliigtyh apnroddhuigcthiopnroedffuicciteinocnye.fficiency

Microfluidic Synthesis of Metal Nanoparticles
Surface Modification of Porous Materials
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call