Abstract

Novel poly(ether urethanes) containing diester groups in the side chains (PU) were synthesized from 4,4'-diphenylmethyl diisocyanate, polytetramethylene glycol, and diethyl bis(hydroxymethyl)malonate as a chain extender. The surface modification of the PU film was carried out by a hydrolysis reaction, poly(ethylene oxide) (PEO) grafting, and heparin immobilization, and the surface-modified PUs were then characterized by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, electron spectroscopy for chemical analysis (ESCA), and a contact angle goniometer. The concentration of carboxylic acid groups introduced on the PU surfaces as determined by the rhodamine interaction method was 61 nmol/cm 2 when treated with 4N NaOH/methanol (1: 2 v/v) for 30 min and subsequently with a citric acid-methanolic aqueous solution. The amounts of heparin coupled to the carboxyl groups on the PU surfaces and to the terminus amino groups on the PU-PEO were 0.92 and 0.84 μ g/cm 2 , respectively. There was almost no heparin released from the immobilized surface of a physiological solution for 100 h, thereby indicating the strong stability of immobilized heparin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.