Abstract
A novel series of ZnII-trans-A2B2 porphyrins and benzoporphyrins bearing phenyl and thiophene-based meso-substituents was successfully synthesized and characterized by spectroscopic and electrochemical techniques. Systematic comparison among the compounds in this series, together with the corresponding A4 analogs previously studied by our group, led to the understanding of the effects of π-conjugated system extension of a porphyrin core through β-fused rings, replacement of the phenyl with the thiophene-based meso-groups, and introduction of additional thiophene rings on thienyl substituents on photophysical and electrochemical properties. Oxidative electropolymerization through bithiophenyl units of both A4 and trans-A2B2 analogs was achieved, resulting in porphyrin- and benzoporphyrin-oligothiophene conjugated polymers, which were characterized by cyclic voltammetry and absorption spectrophotometry. Preliminary studies on catalytic performance toward electrochemical reduction of carbon dioxide (CO2) was described herein to demonstrate the potential of the selected compounds for serving as homogeneous and heterogeneous electrocatalysts for the conversion of CO2 to carbon monoxide (CO).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy & fuels : an American Chemical Society journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.