Abstract
Biologically synthesized nanoparticles via biological entities are produced with less negative impact on the environment and without expensive chemicals, which have biocompatibility and are eco-friendly. Gracilaria crassa is a well-known marine red alga that is edible and unique and is the commercial source of agar and agarose production. In this work, Gracilaria crassa-mediated SiO2 NPs were synthesized by the green synthesis method. In order to characterize the physicochemical properties of the synthesized SiO2 NPs, a variety of microscopic and spectroscopic approaches were used, including imaging with Field emission scanning electron microscopy, Energy-dispersive X-ray analysis, UV spectrophotometry, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, Zeta potential, and Thermo gravimetric analysis. These results shown that Gracilaria crassa-mediated SiO2 NPs were amorphous nature, negatively charged -15.5 mV and spherical shape in size of 20-50 nm. The antioxidant capacity of synthesised SiO2 NPs was examined by 2,2-Diphenyl-1-picrylhydrazyl assay and it observed as IC50 value of 49.4 μg/mL denotes that could counteract the production of free radicals and oxidative stress. The characteristics of the synthesized Gracilara crassa-mediated SiO2 NPs suggest their application as potential antioxidant agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.