Abstract

As a immersion for development of new complexes, new Ru(II) complexes (1–3) supported by benzothiazole hydrazine Schiff bases of the type [Ru(SAL-HBT)(CO)(AsPh3)2], [Ru(VAN-HBT)(CO)(AsPh3)2] and [Ru(NAP-HBT)(CO)Cl(AsPh3)2] [SAL-HBT = (salicyl((2-(benzothiazol-2yl)hydrazono)methylphenol)), VAN-HBT = 2-((2-(benzothiazol-2-yl)hydrazono)methyl)-6 methoxyphenol) and NAP-HBT = naphtyl-2-((2-(benzothiazol-2-yl)hydrazono)methyl phenol)] were synthesized. Their identities have been established by satisfactory elemental analyses, various spectroscopic techniques (IR, (1H, 13C) NMR) and also mass spectrometry. The ruthenium(II) ion exhibits a hexa coordination with distorted octahedral geometry. In complexes 1 and 2, the ligand coordinated as dianionic tridentate fashion by forming N^N donor five member and N^O donor six member chelate rings. However, in complex 3, the ligand coordinated as monoanionic bidentate fashion by forming N^N donor five-membered ring. The new ruthenium(II) carbonyl complexes were successfully applied as catalysts in α -alkylation of aliphatic and aromatic ketones with alcohols via borrowing hydrogen strategy. Various parameters such as base, solvent, temperature, time and catalyst loading on the catalytic activity were analyzed. From the results, the catalyst 1 was found to be the best catalyst for α-alkylation reaction to obtain excellent yield. The catalytic system has a broad substrate scope, which allows the synthesis of α-alkylated ketones in mild reaction conditions with low catalyst loading under air atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call