Abstract

A series of novel metal–organic frameworks comprised of Zn–O–Zn dinuclear units and multidentate pyridine-2,5-dicarboxylate linkers were synthesized under mild conditions. The crystal structure and composition of the novel phases were established from synchrotron powder diffraction data. Small variations in the parameters of the synthesis led to formation of the metal–organic systems of different topologies, either 3D metal–organic frameworks (MOFs) or a 0D molecular complex. The novel MOFs feature a permanent porosity. The excess hydrogen uptake measured for the selected MOF sample was about 0.9 wt % at 77 K and 1 bar. Structural examinations indicated the phase transformation in several samples caused by the absorption of the atmospheric water molecules. The thermal stability and guest-molecule content in the pores of the novel MOFs were also characterized by TGA-DSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.