Abstract
A series of Ar-BIAN-based copper(I) complexes (where Ar-BIAN = bis(aryl)acenaphthenequinonediimine) were synthesised and characterised by (1)H and (13)C NMR spectroscopies, FT-IR spectroscopy, MALDI-TOF-MS spectrometry, cyclic voltammetry and single crystal X-ray diffraction. The bis-chelated complexes of general formula [Cu(Ar-BIAN)(2)]BF(4) (where Ar = C(6)H(5) (1), 4-iPrC(6)H(4) (3), 2-iPrC(6)H(4) (4)) were prepared by reaction of [Cu(NCMe)(4)]BF(4) with two equivalents of the corresponding Ar-BIAN ligands, in dichloromethane, while the mono-chelated complexes of the type [Cu(Ar-BIAN)L(2)]BF(4) (where Ar = 2,6-iPr(2)C(6)H(3), L = PhCN (6); Ar = 4-iPrC(6)H(4), L = PPh(3) (7)) were readily accessible by treatment of [Cu(NCR)(4)]BF(4) (R = Me, Ph) with one equivalent of the corresponding Ar-BIAN ligands in the absence or presence of two equivalents of PPh(3), in the same solvent. The structures of complexes 3, 4, 6 and 7 were obtained by single crystal X-ray diffraction, showing distorted tetrahedral geometries around the copper centres in all cases. The electrochemical studies of these complexes and of the already reported [Cu(2,4,6-Me(3)C(6)H(2)-BIAN)(2)]BF(4) (2) and [Cu(2,6-iPr(2)C(6)H(3)-BIAN)(NCMe)(2)] (5), demonstrated that the bis-chelated complexes 1-4 undergo a reversible one-electron reduction or oxidation processes on copper, while the mono-chelated complexes 5-7 show a partially reversible oxidation and an irreversible reduction feature. Both kinds of (Ar-BIAN)copper(I) complexes are active catalysts for the copper(I)-catalysed azide-alkyne cycloaddition reaction (CuAAC). Complex 7, bearing PPh(3) ligands, exhibits the highest catalytic activity, which is comparable with that of the typical CuSO(4)-sodium ascorbate catalyst system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have