Abstract

A series of cyclized five-membered annulated azafluoranthene (AAF) and seven-membered annulated azulene (AA) derivatives have been synthesized and characterized by spectroscopic methods. The optical absorption and fluorescence spectra have been recorded in organic solvents of different polarity and analyzed within the semiempirical quantum chemical model PM3. In combination with the molecular dynamics simulations it properly reproduces the overall shape of the measured absorption spectra of both AA and AAF dyes including the strongest band in the region of 250-300 nm and the broad first absorption band above 400 nm. While the solvent polarity rises all the dyes exhibit the hypsochromic shift of the first absorption band and the bathochromic shift of the fluorescence band. Such opposite solvatochromic trends appear to be consistent with the Lippert-Mataga solvatochromic model. Compared to AA compounds, both AAF dyes reveal much stronger solvatochromic shift and broadening of the fluorescence band likewise the relative decrease in quantum yield on rising solvent polarity what may be an evidence for the intramolecular charge transfer mechanism being involved into the fluorescence emission. Depending on solvent polarity AA and AAF dyes emit light in the green-yellow range of the visible spectra what may be of interest for potential luminescent or electroluminescent applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.