Abstract
Doped ceria, which has a higher oxygen ion conductivity than yttria-stabilized zirconia, is one of the possible electrolytes for solid oxide fuel cell at low temperatures. This study concerns powder preparation and densification of rare-earth-doped ceria. Rare-earth-doped ceria powders with a composition of Ce0.8R0.2O1.9(R = Yb, Y, Gd, Sm, Nd, and La) were prepared by heating the oxalate coprecipitate when a mixed rare earth/cerium nitrate solution was added to an oxalic solution. The oxalate and derived-oxide powders were characterized by x-ray diffraction (XRD), thermogravimetry differential thermal analysis (TG-DTA), particle size analyzer with laser diffraction, inductively coupled plasma (ICP), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This method provided the oxalate solid solutions containing Ce and R, which were calcined to form the oxide solid solutions at 600 °C in air. The lattice parameter of oxide powders increased linearly with increasing ionic radius of doped rare earth. The size of platelike particles of oxalates and oxides depended on the concentration of oxalic acid and showed a minimum at 0.4 M oxalic acid. Dry milling of oxide powder with α–Al2O3ball was effective in reducing the size and aspect ratios of particles with little contamination of Al2O3. These rare-earth-doped ceria powders with various sizes were formed by uniaxial pressing (49 MPa) followed by cold isostatic pressing (294 MPa), and sintered at 900–1600 °C in air for 4 h. The micrometer-sized-doped CeO2 powders were densified above 95% of the theoretical density at 1200 °C. The grain size of rare-earth-doped ceria after sintering at 1600 °C was larger in the samples with the larger rare-earth element.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.