Abstract

Human skin fibroblasts and bone marrow cells were tested for their ability to synthesize the cobalamin-binding protein transcobalamin II. Cobalamin binders secreted in the media of cultured fibroblasts and of dextran-sedimented bone marrow cells in liquid culture could be identified as transcobalamin II on the basis of immunological, electrophoretical and chromatographical identity with serum transcobalamin II. The net secretion of transcobalamin II increased linearly with time of culture, up to 30 days after confluence. The reversible inhibition of transcobalamin II secretion by cycloheximide demonstrated that human fibroblasts are capable of de novo transcobalamin II synthesis. Addition of cyanocobalamin to the fibroblast culture medium induced a reduction of transcobalamin II net secretion, most likely due to preferred uptake of transcobalamin II saturated with cobalamin, as opposed to unsaturated protein. Addition of lysozymal enzyme inhibitors, ammonium chloride and chloroquine, resulted in a markedly increased secretion of transcobalamin II. In the culture medium of fibroblasts, obtained from two transcobalamin II-deficient patients, functionally deficient transcobalamin II was demonstrated on the basis of strongly reduced secretion of immunoreactive transcobalamin II, and the absence of apotranscobalamin II. Individual phenotypes in the culture media of the fibroblasts and bone marrow cells were identical to the corresponding serum transcobalamin II types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.