Abstract

For a long time, planar tetracoordinate carbon (ptC) represented an exotic coordination mode in organic and organometallic chemistry, but it is now a useful synthetic building block. In contrast, realization of planar tetracoordinate silicon (ptSi), a heavier analogue of ptC, is still challenging. Herein we report the successful synthesis and unusual reactivity of the first ptSi species of divalent silicon present in 3, supported by the chelating bis(N-heterocyclic silylene)bipyridine ligand, 2,2'-{[(4-tBuPh)C(NtBu)]2SiNMe}2(C5N)2, 1]. The compound resulted from direct reaction of 1 with Idipp-SiI2 [Idipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Alternatively, it can also be synthesized by a two-electron reduction of the corresponding Si(IV) precursor 2 with 2 molar equiv of KC10H8. Density functional theory calculations show that the lone pair at the ptSi(II) resides almost completely in its 3pz orbital, very different from known four-coordinate silylenes. Oxidative addition of MeI to the ptSi(II) atom affords the corresponding pentacoordinate Si(IV) compound 4, with the methyl group located in an apical position. Remarkably, the reaction of 2 with [CuOtBu] leads to the regeneration of the bis(silylene) arms via Si-Si bond scission and induces the Si(II) → Si(IV) oxidation of the central Si(II) atom and concomitant two-electron reduction of the bipyridine moiety to form the neutral bis(silylene)silyl Cu(I) complex 5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.