Abstract

The utilization of renewable carbon dioxide resources in the production of commercial chemicals has been at the center of efforts to improve the sustainability of many widely used consumer products. The catalytic coupling of CO2 with ethylene to generate acrylates is one such avenue of research. Despite decades of investigations, catalytic CO2–ethylene coupling has only recently been experimentally demonstrated. The development of a new nickel-based catalyst, 1,2-bis(di-iso-propylphosphino)benzene nickel(0) 1,5-cyclooctadiene, for acrylate production is detailed here. The stoichiometric reactivity of the catalyst toward the CO2, ethylene, and base reagents, as well as the coordination chemistry of likely catalytic intermediates has been examined. Comparative catalytic experiments were used to identify the influence of commonly employed additives, such as metallic zinc and Lewis acidic salts, on the catalytic CO2–ethylene coupling reaction. In addition, catalytic comparisons of the 1,2-bis(di-iso-propylpho...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.