Abstract

Abstract High quality superconducting films of YBa 2 Cu 3 O 7− x were deposited in situ using single target 90° off-axis sputtering. We have investigated their superconducting DC and RF properties, their normal state properties, and their microstructures. These films are distinctly different from bulk crystals and post-deposition annealed films. Sharp superconducting transition temperatures can be reproducibly obtained by control of deposition parameters. The T c can be varied from 75 to 89 K. The optimization of properties other than T c and the control of film texture occur under conditions different from those for which the highest T c is obtained. Normal state conductivities are as high as or higher than those of single crystals. Critical current densities reach 6 × 10 7 A/cm 2 at 4.2 K. All the above properties are relatively insensitive to compositional variations. The T c 's have a much weaker dependence on the c -axis lattice parameters than do those of bulk samples. The measured low-temperature penetration depth is 1400 A and surface resistance at 4.2 K and 10 GHz is as low as 16 μΩ. Microstructural studies show sharp interfaces between films and their substrates and a variety of defect structures. Many of the properties of in situ films can be explained by clean grain boundaries and the characteristics of the surface growth occuring during in situ deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.