Abstract
Star-shaped polylactide was synthesized by bulk polymerization of lactide with poly(amidoamine) (PAMAM) dendrimer as initiator, which was marked as PAMAM-g-PLA for simplicity. The nonlinear architecture of PAMAM-g-PLA was confirmed by gel permeation chromatograph, nuclear magnetic resonance, and differential scanning calorimetry analysis. Unlike the linear polylactide (PLA) with similar molecular weight, PAMAM-g-PLA had a higher hydrophilicity and a faster degradation rate because of shortened polymer chains and increased polar terminal endgroups due to its branch structure. The highly branched structure significantly accelerated the release of water-soluble bovine serum albumin from PAMAM-g-PLA microspheres, whereas the linear PLA with similar molecular weight exhibited an initial time lag release. This star polymer may have potential applications for hydrophilic drug delivery in tissue engineering, including growth factor and antibodies to induce tissue regeneration, by adjusting the chain lengths of PLA branches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.