Abstract

The polymers with pH responsiveness and temperature sensitivity exhibit important applications in many fields. To endow the responsive polymers with self-healing is meaningful work, which contributes to increase their service life and reduce waste of resources significantly. In this research, a series of pH-responsive polyurethanes containing dynamic disulfide bonds and carboxylic acid functional groups were prepared by mixing polycaprolactone diol (PCL), hexamethylene diisocyanate (HDI), 2,2-dimethylolbutyric acid, and bis(2-hydroxyethyl) disulfide. The structure of the polymer was confirmed by some characterization methods such as infrared absorption spectroscopy, Raman scattering spectroscopy, X-ray diffraction, and differential scanning calorimetry. Many performances of the polymer such as the contact angle, thermal stability, mechanics, and self-healing properties can be adjusted by changing the functional units of polyurethanes. The dynamic disulfide bonds in the main chain were observed no harm to the pH response performance, instead which were beneficial to the promotion of heat resistance, tensile properties, and self-healing performance of polyurethane. The elongation at break and the tensile strength are increased by 85.3% and 54.9%, respectively. All the polyurethane exhibited considerable self-healing effects at 110°C, with the highest healing efficiency reaching 93.7%, as a result of the dissociation of hydrogen bonds and the exchange reaction of disulfide bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.