Abstract
ABSTRACT The special photochromic mechanism of spiro-oxazine (SO) refers to low thermostability and weak fatigue resistance. High light transmittance and biocompatibility are the two advantages of polymethyl methacrylate (PMMA), but it does not perform well in terms of tensile strength. Here, a new type of SO (1-(4'methacryloyloxybutyl)- 3,3-dimethyl-9'-hydroxy- 3H-spiro-naphthyl oxazine) was synthesized and introduced as a photochromic monomer into methyl methacrylate (MMA) system, which is an environment-friendly method. Compared with other photochromic polymers that have been reported, the advantages of this material mainly perform in the following areas: (1) The active group was introduced into the N-alkyl chain of SO and copolymerized with PMMA, and the fading rate of the photochromic polymer was dropped by 76.3% compared to SO. (2) Physical and chemical methods were used to improve the flexibility of PMMA-SO. The tensile strength of polymers has been reduced to 3.92 MPa. It also has a high elongation of 269.84% at a break. (3) PMMA-SO still has a significant fatigue resistance after 25 cycles of UV and visible light irradiation. In the future, it has potential applications in the fields of smart glass, data storage, biomimetic materials, and so on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.