Abstract
Nitrogen-doped mesoporous carbon materials have been synthesized by using melamine-formaldehyde resin as carbon precursor and SBA-15 as a removable template. The structure of the materials was investigated by X-ray diffraction, BET specific surface area analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. X-ray and BET studies confirmed that a pore nanostructure is inherited from the silica templates. Fourier transform infrared spectroscopy analysis showed N atoms are strongly bonded in the carbon structure in heterocycles or nitrile functions. These mesoporous nitrogen-doped carbon materials exhibits textural properties with BET surface areas ranging between 400 and 600 m2/g and uniform pore size(3.9 nm). The mechanism of carbonization process is studied by thermogravimetric analysis. The ratio of melamine/formaldehyde plays an important role during the carbonization process for the surface areas and textural properties, and element analysis reveals that the nitrogen content of the mesoporous carbon materials is as high as 10wt%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have