Abstract

AbstractAromatic poly(amide‐imide)s (PAIs) are high‐performance materials with a good compromise between thermal stability and processability when compared with polyamides or polyimides of analogous structures. In addition, the incorporation of photosensitive functional groups and chiral segments into the polymer backbone can lead to interesting polymers for various applications. In this work, six new photosensitive and chiral PAIs were synthesized from the direct polycondensation reaction of novel N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids with 2,5‐bis(4‐aminobenzylidene)cyclopentanone as dibenzalacetone moiety using two different methods. The polymerization reactions produced a series of photosensitive and optically active PAIs in high yields and with good inherent viscosities. The resulting polymers were characterized using Fourier transform infrared and 1H NMR spectroscopy, elemental analysis, inherent viscosity, specific rotation, solubility tests and UV‐visible spectroscopy. The thermal properties of the PAIs were investigated using thermogravimetric analysis. Due to the presence of the dibenzalacetone moiety in the polymer chain, the PAIs have photosensitive properties. Also, these PAIs are optically active and soluble in various organic solvents. These resulting new polymers have the potential to be used in column chromatography for the separation of enantiomeric mixtures. Copyright © 2009 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.