Abstract
A new series of N,N′-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids 3a–g were synthesized by the condensation reaction of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride 1 with two equimolars of various amino acids such as L-alanine 2a, L-valine 2b, L-leucine 2c, L-isoleucine 2d, L-phenyl alanine 2e, L-2-aminobutyric acid 2f and L-histidine 2g in an acetic acid solution. Also 1,5-bis(4-aminophenyl)penta-1,4-dien-3-one 7 was synthesized by using a two-step reaction. At first 1,5-bis(4-nitrophenyl)penta-1,4-dien-3-one 6 was prepared from the reaction of two equimolars 4-nitrobenzaldehyde 5 and one equimolar acetone 4 in ethanol and NaHCO3 and dinitro compound 6 was reduced by using Na2S. Then seven new photosensitive and optically active organo-soluble poly(amide–imide)s (PAIs) 8a–g with good inherent viscosities were synthesized from the direct polycondensation reaction of new N,N′-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids 3a–g with 1,5-bis(4-aminophenyl)penta-1,4-dien-3-one 7 by two different methods such as direct polycondensation in a medium consisting of N-methyl-2-pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride (CaCl2)/pyridine (py) and direct polycondensation in a tosyl chloride (TsCl)/pyridine (py)/N,N-dimethylformamide (DMF) system. The polymerization reactions produced a series of photosensitive and optically active organo-soluble PAIs with high yield and good inherent viscosity. The resulted polymers were fully characterized by means of FTIR and 1H-NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation, solubility tests, UV-vis spectroscopy, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and derivative of thermaogravimetric (DTG). These macromolecules exhibited maximum UV-vis absorption at around 370 and 265 nm in a DMF solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.