Abstract

The synthesis and properties of azo dyes that can be used for photoaligning liquid crystals (LCs) have been investigated. The structures and the synthetic procedure for the azo dyes are presented. The photoaligning of azo dyes takes place purely due to the reorientation of the molecular absorption oscillators perpendicular to the UV light polarization. The qualitative model for the phenomenon in terms of the rotational diffusion of the azo dye molecules in the field of the polarized light is discussed. The order parameters S = -0.4 (80% of the maximum absolute value S m = -0.5) were measured from the polarized absorption spectra at the wavelength 372 nm. A temperature stable pretilt angle of 5.3° was obtained by a two-step exposure of the azo dye film using normally incident polarized light followed by oblique non-polarized light. The azimuthal anchoring energy of the photoaligned substrate was Aϕ , 10−4 J m−2, which is the same as the anchoring of the rubbed polyimide (PI) layer. The voltage holding ratio value of a photoaligned LC cell was found to be even higher than for a rubbed PI layer, which enables the applications of azo dyes as aligning layers in active matrix liquid crystal displays. The thermal stability of the photoaligned azo dye layers is sufficiently high, but UV stability has to be improved, e.g. by polymerization. A new LCD aligning technology based on polymerized azo dye layers is envisaged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.