Abstract

A liquid crystal (LC) lens is prepared by controlling the alignment of a LC using a homogeneous polyimide (PI) layer and a homeotropic PI layer. The rubbed homogeneous PI layer has a concave surface and the homeotropic PI layer is flat. The LC sandwiched between the two PI layers obtains a hybrid alignment which has the largest gradient of refractive index (GRIN) distribution. The LC layer exhibits a lens character because of its convex shape. Since the effective refractive index of the LC is larger than that of the homogeneous PI, the LC lens can focus a light with the shortest focal length in the voltage-off state. By applying an external voltage, the LC molecules can be reoriented along the electric field. As a result, the focal length of the LC lens is reduced. The focal length of the LC lens can be tuned from ~30 to ~120 μm when the voltage is changed from 0 to 7 Vrms. This LC lens has the advantages of no threshold, low operating voltage, and simple fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.