Abstract
A novel biocompatible and biodegradable copolymer was synthesized by one-step hybrid copolymerization of ε-caprolactone (CL) and 2-(N,N-dimethylamino) ethyl methacrylate (DMAEMA) employing (1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phophoranylidenamino]-2Λ5,Λ5-catenadi(phosphazene) (t-BuP4) as a catalyst. The as-synthesized copolymer was betainizated resulting in a zwitterionic copolymer poly(CL-co-zDMAEMA) and the structure of the zwitterionic copolymer was confirmed by the FT-IR, NMR, and XPS measurements. The results of dynamic light scattering (DLS) show that this zwitterionic copolymer can self-assemble into stable micelles. The results of quartz crystal microbalance with dissipation (QCM-D) analysis and MTT measurement suggest that this zwitterionic copolymer possess better protein resistance and lower cell cytotoxicity in vitro in comparison with the cationic copolymer. The pyrene solubilization measurement of copolymers poly(CL-co-zDMAEMA) indicates an excellent pyrene solubilization capacity. These zwitterionic polymer micelles can release drugs in response to specific signals, such as temperature, pH, and enzymes and have a potential application in drug delivery and gene therapy due to their good antifouling, low cytotoxicity and high pyrene solubilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Materials science & engineering. C, Materials for biological applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.