Abstract

Poor water solubility, off-target toxicity, and small therapeutic window are among major obstacles for the development of drug products. Redox-responsive drug delivery nanoplatforms not only overcome the delivery and pharmacokinetic pitfalls observed in conventional drug delivery, but also leverage the site-specific delivery properties. Cleavable diselenide and disulfide bonds in the presence of elevated reactive oxygen species (ROS) and glutathione concentration are among widely used stimuli-responsive bonds to design nanocarriers. This review covers a wide range of redox-responsive chemical structures and their properties for designing nanoparticles aiming controlled loading, delivery, and release of hydrophobic anticancer drugs at tumor site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.