Abstract

An oligonucleotide P3′⇉N5′ phosphoramidate (5′-amino-DNA) attracts much attention because of its potential for application to DNA sequencing; however, its ability to hybridize with complementary strands is low. To overcome this drawback of the 5′-amino-DNA, we have designed and successfully synthesized a novel nucleic acid analogue having a P3′⇉N5′ phosphoramidate linkage and a constrained sugar moiety, 5′-amino-3′-C,5′-N-methylene bridged nucleic acid (5′-amino-3′,5′-BNA). The binding affinity of the 5′-amino-3′,5′-BNA towards complementary DNA and RNA strands was investigated by UV melting experiments. The melting temperature (Tm) of the duplex comprising the 5′-amino-3′,5′-BNA and its complementary strand was much higher than that of the duplex containing the corresponding 5′-amino-DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call