Abstract
A novel iron oxide adsorbent with a high fluoride adsorption capacity was prepared by a facile wet-chemical precipitation method and ethanol treatment. The ethanol-treated adsorbent was amorphous and had a high specific surface area. The adsorption capacity of the treated adsorbent was much higher than that of untreated adsorbent. The Langmuir maximum adsorption capacity of the adsorbent prepared at a low final precipitation pH (≤9.0) and treated with ethanol reached 60.8mg/g. A fast adsorption rate was obtained, and 80% of the adsorption equilibrium capacity was achieved within 2min. The adsorbent had high fluoride-removal efficiency for water in a wide initial pH range of 3.5–10.3 and had a high affinity for fluoride in the presence of common co-anions. The ethanol treatment resulted in structure transformation of the adsorbent by inhibiting the crystallization of the nano-precipitates. The adsorption was confirmed to be ion exchange between fluoride ions and the hydroxyl groups on the adsorbent surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have