Abstract

B2 genes are short repeated sequences which are transcribed by RNA polymerase III. Abundant transcripts accumulate in embryonic and transformed cells, but transcripts are rare or absent from normal differentiated cell types. During retinoic acid-induced differentiation of P19 embryonal carcinoma cells, an early transient increase in B2 RNA levels is followed by a rapid drop in expression. The marked changes in B2 RNA levels are most likely due to transcriptional modulation since B2 RNA stabilities are unaffected by differentiation. At least four short-lived B2 RNAs with apparent lengths of 150, 180, 240, and 500 nucleotides were characterized. The two larger RNAs are polyadenylated and are more stable in cells. A cDNA of a B2 gene was isolated which was over 99% identical to the consensus sequence. This B2 cDNA can be transcribed in human cells and yields at least two distinct transcripts. We propose a model for B2 RNA metabolism which describes transcription, posttranscriptional modification and processing, and nucleocytoplasmic transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.