Abstract

Mouse embryonal carcinoma (EC) cell lines were established which carry the stably integrated chloramphenicol acetyltransferase (CAT) gene under the control of the transcriptional elements of the long terminal repeat (LTR) of Moloney murine leukemia virus. The activity of three elements of the stably integrated LTR was analyzed in undifferentiated EC cells (stable CAT assay). Results of the study are summarized as follows. (i) In the stable assay, the promoter region of the LTR was inactive in undifferentiated ECA2 and F9 cells, and the level of the activity was 10(-4) of that in NIH 3T3 cells. (ii) In contrast to the results of the transient assay, the enhancer was active in undifferentiated ECA2 cells and in F9 cells. It activated CAT activity more than 60-fold and about 8-fold in ECA2 cells and F9 cells, respectively. (iii) Suppression by ELP, the embryonal LTR-binding protein, was more pronounced in the stable assay than in the transient assay. These data suggest that, when compared with NIH 3T3 cells, a major factor for the inactivity of the LTR in EC cells is the inefficiency of the promoter in this assay. Transcriptional activity of the LTR was analyzed during the differentiation of EC cells. In the case of ECA2 cells, the magnitude of activation by the enhancer did not change during differentiation. The activity of the promoter increased about 10-fold, and the suppression by ELP became negligible 4 days after the induction of differentiation. Upon differentiation of F9 cells, the activity of the enhancer increased more than 300-fold, but the promoter remained inactive. The pattern of LTR-binding proteins also varied during the differentiation of EC cells. Our present data suggest that the activity of LTR elements as assayed by the stable assay differs from the activity as assayed by the transient assay. It also indicates that the activity of these elements exhibits cell-type-specific changes during the differentiation of EC cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.