Abstract
A novel Eu(II) complex with 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (EHHEHP or PC88A) was synthesized and blended with polystyrene polymer (PS). Both an independent complex and the Eu(II)/PS blend excited by near-UV light produced blue luminescence, arising from the 5d→ 4f transitions of Eu(II). Time-dependent density functional theory (TD-DFT) calculations on electronic structures of the complex molecule indicated that the absorbing and emitting center was associated with the (2)A(d(z(2))) state under the C(2) crystal field. We also synthesized silver nanoparticles (Ag NPs) with an average particle size of 4.48 nm (σ = 0.91 nm) using EHHEHP as a stabilizer. The effects of Ag NPs as a colloidal suspension and an interfacial layer on the luminescence intensity of the blend were investigated as functions of the concentration of Ag NPs and the thickness of the Ag NP layer, respectively. The critical concentration of the colloidal Ag NPs and the critical thickness of the interfacial Ag NP layer were ∼355 ppm and ∼0.16 μm, respectively. Under critical conditions, the Ag NPs increased the luminescence intensity by 4.4 times as a colloidal suspension in CH(2)Cl(2) and 2.2 times as an interfacial-layer state.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have